Tidal Resuspension of Microphytobenthos: Flood-ebb and Spring-neap Variations

part of the study on the 'Biomass and Productivity of Microphytobenthos on the Tidal Flat of Saga Prefecture, Japan' (April 2002 - March 2003)

Nov 10, 2006, KORDI

Khim, Jong Seong

Lab. of Marine Benthic Ecology School of Earth & Environmental Sciences College of Natural Sciences Seoul National University

Report on the 'Biomass and Productivity of Microphytobenthos on the Tidal Flat of Saga Prefecture, Japan' (April 2002 - March 2003)

Research Topics

1. Background 2. Objectives 3. Methods 4. Results 5. Discussion 6. Remark

Background-1

sediment particles

benthic diatoms

tidal flats

Questioning!

microalgal biofilm

Study area Nanaura mudflat (macrotidal)

Japan C. Oita

5

Well known

General features in the aspect of

- 1) Physics
- Resuspension and redistribution of microphytobenthos (MPB)
- 2) Geology
- Erosion, sedimentation, and transport of sediment particles (SPM)
- 3) Ecology
- Resuspended MPB may contribute total water column production

in tidal flat ecosystem

Not well known

- Specific features of
- 1) Behavior of MPB and SPM resuspension in terms of tidal cycles (flood-ebb and spring-neap)
- 2) Relationship between MPB and SPM during resuspension

in terms of 'concentration' and/or 'flux'

We aimed to find

General features

To examine the resuspension of MPB and SPM during tidal cycles
 To find the key factors affecting the tidal resuspension of MPB
 To estimate a portion of benthic-derived MPB in water column

in terms of 'concentration' (earlier Topic-1a)

- Further, Detailed behaviors
- 4) To describe the behaviors of MPB and SPM resuspension

in a viewpoint of 'flux' (earlier Topic-1b)

Method-1

• Data Set 1 (Resuspension)

- Seawater (1301 records)
- Mar-Apr 2003 (28 tidal periods)
- Mooring records of
 1) Chl a, 2) SPM, 3) CV, 4) WD
 plus 5) Wind during flood-ebb

- Data Set 2 (Benthic biomass)
- Sediment (n=40)
- Mar 2003 (13 exposure periods)
- Manual measurement of
 1) Chl a, 2) Pheo-pigments
 during exposure

Calculations

MPB (C_w)

resuspension 🔨 SPM (C_{SPM})

MPB (C_{sed})

Method-3

Example of Calculations: for one flood-ebb cycle

Raw Data	90 Mar Ecol Prog Ser 312: 85-100, 2006	
	Spring Neap Spring	Chl a
All-In-One (start from this figure)		SPM
	22 20 (100) 10 5 5 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0	CV
Chl a SPM WD	t t t t t t t t t t t t t t t t t t t	WD
		Winc
Current velocity mooring sensor	20 Mar 21 22 23 24 25 26 27 28 29 30 31 1 Apr 2 3 Date (in 2003) Fig. 3. Temporal changes in chi a and suspended particulate matter (SPM) concentrations in seawater measured at Stn A from the upper intertidal flat over 28 tidal cycles (mooring records). Corresponding current velocity, water depth, and wind speed are presented as well. Shaded sections indicate data for spring-tide, while open sections represent data for neap-tide periods	1

Result-1

We found: 1) spring > neap concentration, 2) flood peak

We found: 3) characteristics of Chl a/SPM ratio

ChI a/SPM peaked during slack water when current velocity was low
 ChI a/SPM greater during neap tide when current velocity was low

Result-3

We found: 4) spring > neap flux, 5) predominant offshore transport

Result-4

We found: 6) resuspension influenced by CV and wind speed

<u>Result-5</u>

We found: 7) resuspended Chl a equal to >30% of sediment Chl a

	Sampling date	Sediment	Seav	vater	Seawater / Sediment		
Tidal condition		C_{sed} (mg m ⁻²)	$C_{w-resus-f}$ (mg m ⁻²)	$C_{w-resus-e}$ (mg m ⁻²)	C _{w-resus-f} / C _{sed} (ratio)	C _{w-resus-e} / C _{sed} (ratio)	
Spring	20 Mar	151	58	47	0.37	0.30	
	21 Mar	123	53	12	0.35	0.08	>30% (C
	22 Mar	89	14	19	0.12	0.15	W resus
	23 Mar	76	55	64	0.61	0.71	resuspension $\uparrow^{\bullet \bullet \bullet \bullet}$
	23 Mar	63	16	50	0.22	0.66	
Neap	24 Mar	62	15	47	0.23	0.74	1000/ (0)
	25 Mar	63	28	27	0.46	0.43	100% (C _{sed})
	25 Mar	69	9	8	0.14	0.13	S
	26 Mar	63	22	30	0.31	0.44	
	26 Mar	73	16	10	0.22	0.13	
	27 Mar	47	11	13	0.24	0.27	
Spring	31 Mar	84	31	20	0.37	0.24	
Mean ± SI	<u>)</u>						
Spring per	riod	98 ± 33	38 ± 20	35 ± 21	0.34 ± 0.17	0.36 ± 0.27	
Neap peri	bd	63 ± 9	17 ± 7	22 ± 15	0.27 ± 0.11	0.36 ± 0.23	
Entire per	hoi	80 + 29	27 ± 18	29 ± 19	0.30 ± 0.14	0.36 ± 0.24	

Summary-1: Results-1-5

We found

• Key results were

- 1) resuspension found to be clearly associated with flood-ebb and spring-neap tidal characteristics (tidal energy)
- 2) Peaks of resuspended ChI *a* and SPM consistently observed shortly after the current velocity maximized (early flood, >15 cm s⁻¹)
- 3) Chl *a* and SPM fluxes showed clear spring-neap variations, and time-integrated fluxes denoted predominant offshore transport
- 4) Much more highly fluctuating, irregular peaks of Chl a and SPM occasionally observed when wind speed ≥3 m s⁻¹
- 5) Daily mean percentage of resuspended Chl *a* in water column relative to benthic Chl *a* estimated to be ca. 10-70% (mean=33%)

Result-6a

We found: flux lag and coupling-decoupling behavior (typical)

Result-6b

We found: flux lag but lack of decoupling (masking by wind)

Four-tidal phases classified by current velocity (CV)

- Flood tide
 - to maximum (early flood)
 - down to ≈zero (mid-late flood) phase-2

• Ebb tide

- to minimum (early-mid ebb)
- to last period (mid-late ebb)
- □ phase-3

• phase-1

phase-4

Fluxes of Chl a and SPM during

- phase-1: increased
- phase-2: increased for a time (lag), then decreased (but lack of decoupling)
 - *phase-3*: increased (but irregular)
 - phase-4: decreased

Fluxes of Chl *a* and SPM high flux in response to high CV

Result-6c

We found: flux lag and weak decoupling (low current velocity)

Result-6d

We found: irregular pattern (high wind effect)

Four-tidal phases classified by current velocity (CV)

- Flood tide
 - to maximum (early flood)
 - phase-2 - down to ≈zero (mid-late flood)

• Ebb tide

- to minimum (early-mid ebb) ■ phase-3
- to last period (mid-late ebb)

• phase-1

phase-4

Fluxes of Chl a and SPM during

• phase-1: increased • phase-2: irregular (high wind effect) ■ *phase-3*: increased phase-4: irregular (high wind effect)

Fluxes of Chl a and SPM moderate flux in response to high wind though under low CV (scale of X-Y is in 1/4 compared to result 4a and 4b)

Result-6e

We found: behaviors of Chl a and SPM: much clear in 'flux'

Summary-2: Results-6a-e

We further found

• Key results were

- 1) clear patterns of 'lag' and 'decoupling', with high fluxes (under spring tide & low wind condition; tide # 1(2)3, 4, 6, 7, 22, 23, 27, 28)
- 2) 'lag' found, but no 'decoupling', sometime irregular, with high fluxes (under spring tide & high wind condition; tide #5,24, 25, 26)
- 3) 'lag' found and weak 'decoupling', with low fluxes (under neap tide & low wind condition; tide # 8, 9, 10, 12, 14, 16, 18, 20, 21)
- 4) irregular fluctuation, with moderate fluxes (under neap tide & high wind condition; tide # 11, 13, 15) 17, 19)

Discussion

Discussion-1

Present study indicated: in terms of 'concentration'

- Tide- and wind-induced resuspension of MPB and SPM
- 1) Similar temporal fluctuation of MPB and SPM in water column (influenced by current and wind)
- 2) Tide-induced resuspension: regular (threshold CV of ca. 15 cm s⁻¹)
- 3) Wind-induced resusepension: irregular, twice more effective than CV (effective wind speed of ca. 3 m s⁻¹)

Benthic-pelagic coupling

- 4) Sediment MPB showed similar temporal distribution with water-column MPB during a full spring to neap tidal cycle
- 5) Overall contribution of resuspended Chl *a* to total Chl *a* in tidal flat considerable ranging from 9 to 61% (mean=42%)

Discussion-2

Present study revealed: in terms of 'flux'

• Behavior of MPB and SPM

- 1) Fluxes of MPB and SPM broadly reflected tidal energy (in terms of direction and strength) during a full spring to neap tidal cycle
- 2) Plotting MPB and SPM fluxes over time (namely four-tidal phases) indicated 'lag', 'coupling', 'decoupling', & 'irregular' characteristics of MPB and SPM behaviors in water column during resuspension
- 3) current velocity primarily controlled MPB and SPM behaviors ('decoupling' pattern & ranges of fluxes) higher wind masked regular pattern of MPB and SPM behaviors (viz. current-dependent fluxes)

Remark!

Important note

- Need to examine more data
- 1) Overall, the analysis of Chl *a* and SPM indicated that MPB (viz. Chl *a*) were closely associated with sediment particles (viz. SPM) in water column during a course of tidal resuspension (evidence from the observation and data presented)
- 2) However, more detailed analyses of each parameter from the plenty of mooring data should be analyzed to further extract and confirm the type of behavior of microphytobenthic ChI *a* together with SPM, in terms of 'flux' as well as 'concentration'
- 3) Finally, further flora and production study should be performed to clearly demonstrate the structure and function of MPB in tidal flat ecosystem

Thank You

Acknowledgement

to Prof. Hayashi and Miss Yahiro in ILT, Saga University

マリンI号

supported by the Research and Development Program for New Bio-industry Initiatives (2001-03), Japan (Title: Technological development for bottom sediment improvement and benthos restoration in the Ariake Sea)

30

supported by the Korean Sea Grant Project (2001-03), Ministry of Maritime Affairs & Fisheries, Korea (Title: An estimation of biomass and production of benthic microalgae in coastal sediment, Korea)